If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + x + -24 = 0 Reorder the terms: -24 + x + x2 = 0 Solving -24 + x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '24' to each side of the equation. -24 + x + 24 + x2 = 0 + 24 Reorder the terms: -24 + 24 + x + x2 = 0 + 24 Combine like terms: -24 + 24 = 0 0 + x + x2 = 0 + 24 x + x2 = 0 + 24 Combine like terms: 0 + 24 = 24 x + x2 = 24 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. x + 0.25 + x2 = 24 + 0.25 Reorder the terms: 0.25 + x + x2 = 24 + 0.25 Combine like terms: 24 + 0.25 = 24.25 0.25 + x + x2 = 24.25 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = 24.25 Calculate the square root of the right side: 4.924428901 Break this problem into two subproblems by setting (x + 0.5) equal to 4.924428901 and -4.924428901.Subproblem 1
x + 0.5 = 4.924428901 Simplifying x + 0.5 = 4.924428901 Reorder the terms: 0.5 + x = 4.924428901 Solving 0.5 + x = 4.924428901 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 4.924428901 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 4.924428901 + -0.5 x = 4.924428901 + -0.5 Combine like terms: 4.924428901 + -0.5 = 4.424428901 x = 4.424428901 Simplifying x = 4.424428901Subproblem 2
x + 0.5 = -4.924428901 Simplifying x + 0.5 = -4.924428901 Reorder the terms: 0.5 + x = -4.924428901 Solving 0.5 + x = -4.924428901 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -4.924428901 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -4.924428901 + -0.5 x = -4.924428901 + -0.5 Combine like terms: -4.924428901 + -0.5 = -5.424428901 x = -5.424428901 Simplifying x = -5.424428901Solution
The solution to the problem is based on the solutions from the subproblems. x = {4.424428901, -5.424428901}
| D^2*3.14*.25=a | | D-.886=a | | 3(5x-x)=4(2x+1) | | -8=(-1x+4) | | A-.886=d | | x/6-x/12+9=x+9 | | 2(8x-1)=11x-7 | | 4r=2x+9 | | 6-5[8-(2y-4)]=0 | | y/4+3/7=y/7-3/7 | | -9(7-5m+n)= | | 5x-7+10x-23=180 | | A=.25*3.14*d^2 | | 27x+9y=81 | | 6(x+7m+3)= | | 17x+10=11x+13 | | x+64-89=0 | | 4x-10=x+3x+2x | | (6y+10z)-(13y-5z+4)= | | 2(3c-2)-5=2c+3 | | 3n=17 | | 5y+4(y-7)=4(y+1)-3 | | r+30=16 | | 8=w(w-7) | | 2(3+5x)-2=14 | | 0.16(y-7)+0.14y=0.10y-0.05(10) | | 3z+9=7 | | 2t^3= | | y^4-7y^2+6=0 | | X^2+2x+1=100 | | 15x^2=29 | | 0.60x+0.30(10)=0.30(106) |